(-3/(x^2+9x-10))-(12/(x^2-49))=0

Simple and best practice solution for (-3/(x^2+9x-10))-(12/(x^2-49))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3/(x^2+9x-10))-(12/(x^2-49))=0 equation:



(-3/(x^2+9x-10))-(12/(x^2-49))=0
Domain of the equation: (x^2+9x-10))!=0
x∈R
Domain of the equation: (x^2-49))!=0
x∈R
We calculate fractions
(-3x^2+147)/((x^2+9x-10))*x^2+(-12x^2-108x+120)/((x^2+9x-10))*x^2=0
We multiply all the terms by the denominator
(-3x^2+147)+(-12x^2-108x+120)=0
We get rid of parentheses
-3x^2-12x^2-108x+147+120=0
We add all the numbers together, and all the variables
-15x^2-108x+267=0
a = -15; b = -108; c = +267;
Δ = b2-4ac
Δ = -1082-4·(-15)·267
Δ = 27684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{27684}=\sqrt{36*769}=\sqrt{36}*\sqrt{769}=6\sqrt{769}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-108)-6\sqrt{769}}{2*-15}=\frac{108-6\sqrt{769}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-108)+6\sqrt{769}}{2*-15}=\frac{108+6\sqrt{769}}{-30} $

See similar equations:

| 3(4x+5)=x | | 57-7a=57 | | -(9-3a)-(4+2a)-3=-(2-5a)+(-a)+ | | 42=-6x+6(4x+11) | | 72=3x+3(6x-11) | | X=30/y | | 60=y/4 | | 2.5g=0.45=0.95 | | X=5/y^2 | | 2a=43 | | 4(x+8)x=6 | | u/5+6/1=2 | | x2+10=9 | | x-6=4×5 | | 1.5x61.5=84.85 | | 6(7-4v)=6(-6+3)v | | 6(7-4v)=6(-6+3) | | -5(k+8)=-5(-8+5k) | | 3+8(9x+8)=-4-9(8x-7)= | | 8x-28.9=3.3 | | 5(5-2x)-4=-2(-1+5x0 | | (9+7x)=(-23+7x) | | -2+3(-4x+3)=16 | | -6y-2=2(-2y-1) | | 1x=8/6x-2 | | X+7=23-3x | | 80=6y-4 | | -2x+12=-4x | | r/8=3/2 | | r/8=11/2 | | -33=3(-6+7n)-6(1+3n) | | 10x-15=7x+10 |

Equations solver categories